
PHYSICAL REVIEW E 66, 026701 ~2002!
Construction of high-order force-gradient algorithms for integration of motion
in classical and quantum systems
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2Institute for Theoretical Physics, Linz University, A-4040 Linz, Austria
~Received 5 November 2001; published 2 August 2002!

A consequent approach is proposed to construct symplectic force-gradient algorithms of arbitrarily high
orders in the time step for precise integration of motion in classical and quantum mechanics simulations.
Within this approach the basic algorithms are first derived up to the eighth order by direct decompositions of
exponential propagators and further collected using an advanced composition scheme to obtain the algorithms
of higher orders. Contrary to the scheme proposed by Chin and Kidwell@Phys. Rev. E62, 8746~2000!#, where
high-order algorithms are introduced by standard iterations of a force-gradient integrator of order four, the
present method allows one to reduce the total number of expensive force and its gradient evaluations to a
minimum. At the same time, the precision of the integration increases significantly, especially with increasing
the order of the generated schemes. The algorithms are tested in molecular dynamics and celestial mechanics
simulations. It is shown, in particular, that the efficiency of the advanced fourth-order-based algorithms is
better approximately in factors 5 to 1000 for orders 4 to 12, respectively. The results corresponding to sixth-
and eighth-order-based composition schemes are also presented up to the sixteenth order. For orders 14 and 16,
such highly precise schemes, at considerably smaller computational costs, allow to reduce unphysical devia-
tions in the total energy up in 100 000 times with respect to those of the standard fourth-order-based iteration
approach.
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I. INTRODUCTION

Understanding the dynamic phenomena in classical
quantum many-body systems is of importance in most a
of physics and chemistry. The development of efficient al
rithms for solving the equations of motion in such syste
should therefore impact a lot of fields of fundamental
search. During the last decade a considerable activity@1–9#
has been directed on the construction of symplectic tim
reversible algorithms that employ decompositions of the e
lution operators into analytically solvable parts. The deco
position algorithms exactly preserve all Poincare´ invariants
and, thus, are ideal for long-time integration in molecu
dynamics@10# and astrophysical@11# simulations. The rea-
son is that for these algorithms the errors in energy con
vation appear to be bounded even for relatively large val
of the size of the time step. This is in a sharp contras
traditional Runge-Kutta and predictor-corrector schem
@12,13#, where the numerical uncertainties increase linea
with increasing the integration time@9,14–17#.

The main attention in previous investigations has be
devoted to derive different-order decomposition algorith
involving only force evaluations during the time propag
tion. For instance, the widely used velocity- and positio
Verlet algorithms@18,19# relate, in the general classificatio
to a three-stage decomposition scheme of the second o
with one force evaluation per step. The fourth-order alg
rithm by Forest and Ruth@2# corresponds to a scheme wi
three such force recalculations and consists of seven sin
exponential stages. Sixth-order schemes are reproduced@4,6#
beginning from fifteen stages and seven evaluations of fo
for each body in the system per given time step. With furt
1063-651X/2002/66~2!/026701~21!/$20.00 66 0267
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increasing the order of force decomposition schemes,
number of stages and thus the number of the correspon
nonlinear equations~which are necessary to solve nume
cally to obtain the required time coefficients for singl
exponential propagations! increases drastically. In addition
such equations become too cumbersome and all these, ta
into account the capabilities of modern supercomputers,
to the impossibility of representing the direct decomposit
algorithms of order eight and higher in an explicit form@6#.
In order to simplify this problem, it was propose
@1,3,5,6,20–23# to derive higher-order integrators by com
posing schemes of lower~actually second! orders. The re-
sulting second-order-based composition algorithms h
been explicitly obtained up to the tenth order@5,6,22#.

Relatively recently@24–26#, a deeper analysis of the op
erator factorization process has shown that the class of
lytically integrable decomposition integrators can be e
tended including additionally a higher-order commutator in
the single-exponential propagations. As a consequence,
of so-called force-gradient algorithms of the fourth order h
been introduced. A distinguishable feature of these al
rithms is the possibility to generate solutions using only po
tive values for time coefficients during each substage of
integration. This is contrary to the original decompositi
approach, where beyond second order~as has been rigor
ously proved by Suzuki@3#! any scheme expressed in term
of only force evaluation must produce some negative ti
coefficients. We mention that applying negative time prop
gations is impossible, in principle, in such important fields
nonequilibrium statistical mechanics, quantum statistics,
chastic dynamics, etc., because one cannot simulate diffu
or stochastic processes backward in time nor sample con
rations with negative temperatures. In the case of stocha
dynamics simulations it has been demonstrated explic
©2002 The American Physical Society01-1
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@27,28# that using fourth-order force-gradient algorithm
leads to much superior propagation over standard Ve
based schemes of the second order in that it allows m
larger time steps with no loss of precision. A similar patte
was observed in classical dynamics simulations compa
the usual fourth-order algorithm by Forest and Ruth with
force-gradient counterparts@26#.

Quite recently, Chin and Kidwell@29# have considered a
question of how to iterate the force-gradient algorithms
higher orders. The iteration was based on Creutz and G
sch’s approach@30# according to which an algorithm of orde
K12 can be obtained by triplet construction of a self-adjo
~i.e., time-reversible! scheme of orderK. Then starting from
a fourth-order integrator, it has been shown in actual celes
mechanics simulations that for orders 6, 8, 10, and 12,
numerical errors corresponding to the force-gradient-ba
schemes are significantly smaller than those of the sche
basing on iterations of usual nongradient algorithms. T
resulting efficiency of the integration has also increased c
siderably despite increased computational efforts spen
the calculations of force gradients. The same has been
in the case of quantum mechanics simulations when solv
the time-dependent Schro¨dinger equation@31#.

It is worth emphasizing, however, that the iterati
scheme proposed by Chin and Kidwell is far to be optim
for deriving high-order integrators belonging to the forc
gradient class. The reason is that the number of total fo
and its gradient evaluations increases too rapidly with
creasingK. Remembering that such evaluations constit
the most time-consuming part of the calculations, this m
restrict the region of applicability of force-gradient alg
rithms to relative low orders only. Note that high-order co
putations are especially desirable in problems of astroph
cal interest, because then one can observe a system o
very long period of time. They may also be useful in high
precise molecular dynamics and quantum mechanics sim
tions to identify or confirm very subtle effects.

In the present paper we propose a general approac
construction of symplectic force-gradient algorithms of ar
trary orders. The approach considers the splitting and c
posing of the evolution operators on the basic level, tak
into account the explicit structure of truncation terms at e
given order in the time step. This has allowed us to obt
exclusively precise and economical algorithms by using s
nificantly smaller number of single-exponential propagatio
than that appearing within standard decomposition and it
tion schemes. The paper is organized as follows. The e
tions of motion for classical and quantum systems are p
sented in Sec. II A. The integration of these equations
direct decompositions and their force-gradient generaliza
are described in Sec. II B. Explicit expressions for ba
force-gradient algorithms of orders 2, 4, 6, and 8 are a
given there. The higher-order integration based on advan
compositions of lower-order schemes is considered in S
II C. The composition constants for fourth-, sixth-, an
eighth-order-based schemes are calculated and written in
same section up to the overall order 16. Sections III A a
III B are devoted to applications of obtained force-gradie
algorithms to molecular dynamics and celestial mechan
02670
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simulations, respectively. A comparative analysis of the
troduced algorithms with existing integrators is made th
as well. The final discussion and concluding remarks
highlighted at the end in Sec. IV.

II. GENERAL THEORY OF CONSTRUCTION OF FORCE-
GRADIENT ALGORITHMS

A. Basic equations of motion for classical and quantum
systems

Consider first a classicalN-body system described by th
Hamiltonian

H5(
i 51

N mivi
2

2
1

1

2 (
i 5” j

N

w~r i j ![T1U, ~1!

where r i is the position of particlei moving with velocity
vi5dr i /dt and carrying massmi , w(r i j )[w(ur i2r j u) de-
notes the interparticle potential of interaction, andT and U
relate to the total kinetic and potential energies, respectiv
Then the equations of motion can be presented in the foll
ing compact form:

dr

dt
5@r +H#[Lr~ t !. ~2!

Here r5$r ,v%[$r i ,vi% is the full set (i 51,2, . . . ,N) of
phase variables,@+# represents the Poisson bracket and

L5(
i 51

N S vi

]

]r i
1

f i

mi

]

]vi
D ~3!

is the Liouville operator withf i52( j ( j 5” i )
N w8(r i j )r i j /r i j be-

ing the force acting on particles due to the interactions.
In the case of quantum systems, the state evolution ca

described by the time-dependent Schro¨dinger equation,

i\
]c

]t
5H~r !c[@T1U~r !#c, ~4!

whereT52 1
2 ( i 51

N \2
“ i

2/mi andU are the kinetic and poten
tial energy operators, respectively, andc is the wave func-
tion. The so-called quantum-classical dynamics models@32#
can also be introduced. This leads to a coupled system
Newtonian~2! and Schro¨dinger ~4! equations. But, in order
to simplify notations, we restrict ourselves to the abo
purely classic and quantum considerations.

If an initial configurationr(0) or c(0) is provided, the
unique solution to Eq.~2! or ~4! can be formally cast as

R~ t !5eLtR~0![~eLDt! lR~0!, ~5!

whereDt andl 5t/Dt are the size of the single time step an
the total number of steps, respectively,R denotes eitherr or
c, whereasL corresponds toL or 2 iH/\. As is well known,
the time evolution of many-particle systems cannot be p
formed exactly in the general case. Thus, the problem ar
on evaluating the propagatoreLDt by numerical methods.
1-2
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B. Integration by direct decompositions

1. Original decomposition approach

The main idea of decomposition integration consists
factorization of the full exponential operatoreLDt on such
subpropagators that allow to be evaluated analytically o
least be presented in quadratures. Within the original
proach, this is achieved by splitting the operatorL5A1B
into its kineticA and potentialB parts, whereA5v"]/]r or
A52 iT/\ andB5a"]/]v with a[$ai%5$f i /mi% being the
acceleration orB52 iU/\ for the cases of classical or qua
tum mechanics, respectively. Then, taking into account
smallness ofDt, the total propagator can be decompos
@1–3,5,24# using the formula

e(A1B)Dt1O(DtK11)5 )
p51

P

eAapDteBbpDt, ~6!

where the coefficientsap andbp are chosen in such a way s
as to provide the highest possible value forK>1 at a given
integer numberP>1. As a result, integration~5! can be per-
formed approximately with the help of Eq.~6! by neglecting
truncation termsO(DtK11). The precision will increase with
increasing the orderK and decreasing the sizeDt of the time
step.

As can be verified readily, the exponential subpropaga
eAt andeBt, appearing in the right-hand-side of Eq.~6!, are
analytically integrable for classical systems. Indeed, tak
into account the independence ofv on r anda on v yields

eAtr[etv"]/]r$r ,v%5$r1vt,v%,

eBtr[eta"]/]v$r ,v%5$r ,v1at%, ~7!

which represent simple shift operators in position and vel
ity spaces, respectively, witht being equal toapDt or bpDt.
For quantum mechanics propagations, the kinetic parteAt

[e2 i tT/\ will require carrying out two, one direct and on
inverse, spatial Fourier transforms@31#, whereas the calcula
tion of eBt[e2 i tU/\ is trivial.

In view of decompositions~6!, one can reproduce integra
tors of various orders in the time step. In particular, the w
known second-order (K52) velocity-Verlet algorithm
@19,18#

e(A1B)Dt1O(Dt3)5eB(Dt/2)eADteB(Dt/2) ~8!

is readily derived from Eq.~6! by putting P52 with a1
50, b15b251/2, anda251. The fourth-order (K54) al-
gorithm proposed by Forest and Ruth@2# is obtained from
Eq. ~6! at P54 with a150, a25a45u, a35(122u), b1

5b45u/2, and b25b35(12u)/2, where u51/(22A3 2).
Schemes of the sixth order (K56) are derivable starting
from P58 with numerical representation of time coefficien
@4,6#.

The original decomposition approach has, however, a
of disadvantages. First of all, it is worth pointing out th
with further increasing the order of integration~6! to K58
and higher, the number 2P of unknownsap andbp begins to
02670
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increase too rapidly. This leads to the impossibility of rep
senting algorithms of such a type forK.6 in an explicit
form @6#, because it becomes impossible to solve the sa
number of the resulting cumbersome nonlinear equati
~with respect toap and bp) even using the capabilities o
modern supercomputers. Another drawback consists in
fact that forK.2 it is impossible@3# at anyP to derive from
Eq. ~6! a decomposition scheme with the help of only po
tive time coefficients. For example, in the case of Fore
Ruth integration, three of eight coefficients, namely,a3 , b2,
andb3, are negative. As was mentioned in the introductio
schemes with negative time coefficients have a restricted
gion of application and are not acceptable for simulat
nonequilibrium statistical mechanics, quantum statistics,
chastic dynamics, and other important processes. Moreo
for schemes expressed in terms of force evaluation only,
main termO(DtK11) of truncation uncertainties appears
be, as a rule, too big, resulting in a decrease in the efficie
of the computations.

2. Generalized force-gradient decomposition method

From the aforesaid, it is quite desirable to introduce
more general approach that is free of the above disadv
tages. At the same time, this approach, like the origi
scheme, must be explicit, i.e., lead to analytical propa
tions. In addition, it is expected that the already known d
composition algorithms should appear from it as particu
cases.

Let us first analyze the structure of third-order truncati
errorsO(Dt3) of the velocity-Verlet algorithm in detail. Ex-
panding both the sides of Eq.~8! into Taylor’s series with
respect toDt, one finds

O~Dt3!5S 1

12
†A,@A,B#‡1

1

24
†B,@A,B#‡DDt31O~Dt5!,

~9!

where@ ,# denotes the commutator of two operators. Taki
into account the explicit expressions for operatorsA andB it
can be shown that one of the two third-order operators in
~9!, namely†B,@A,B#‡, is relatively simple and, more impor
tantly, it allows to be handled explicitly, contrary to the o
erator†A,@A,B#‡. In the case of classical systems it can
obtained readily that

C[†B,@A,B#‡5(
i 51

N gi

mi

]

]vi
[G

]

]v
, ~10!

wheregia52( j bf j b /mj]f ia /]r j b . In view of the expression
f ia52( j ( j Þ i )w8(r i j )(r ia2r j a)/r i j for forces, the required
force-gradient evaluations]f ia /]r j b are explicitly represent-
able, i.e.,

gi522 (
j ( j 5” i )

N F ~ai2aj !
w i j8

r i j
1

r i j

r i j
3 ~r i j w i j9 2w i j8 !@r i j "~ai2aj !#G

[ (
j ( j 5” i )

N

g~r i j !5gi~r !. ~11!
1-3
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As can be seen easily from Eqs.~10! and~11!, the opera-
tor C commutes withB[a"]/]v, and, in addition, the func-
tion G like a does not depend on velocity. Then the forc
gradient partCDt3/24 of truncation uncertainties~9! can be
extracted by transferring them from the left-hand side of E
~8! to its right-hand side and further symmetrically collecti
with operatorB under exponentials. This yields the follow
ing force-gradient version:

e(A1B)Dt1O(Dt3)5eB(Dt/2)2C(Dt3/48)eADteB(Dt/2)2C(Dt3/48)

~12!

of the velocity-Verlet integrator, where alreadyO(Dt3)
5@A,@A,B##Dt3/12.

In the case of higher-order (K.2) integration~6!, the
operatorC will enter into truncation uncertaintiesO(DtK11)
by various combinations. They can be extracted similarly
for K52, and we come to a force-gradient decomposit
approach. The most general representation of this appro
is

e(A1B)Dt1O(DtK11)5 )
p51

P

eAapDteBbpDt1CcpDt3, ~13!

where again at a givenP the coefficientsap , bp , as well
ascp must be chosen in such a way to cancel the trunca
termsO(DtK11) to the highest possible orderK. For cp[0,
generalized factorization~13! reduces to usual representatio
~6!. It is worth emphasizing that in view of the velocity in
dependence ofG on v, the modified operator of shifting ve
locities remains to be evaluated exactly for anybp andcp ,
namely,

eBbpDt1CcpDt3$r ,v%5$r ,v1bpaDt1cpGDt3%. ~14!

For quantum systems, whereC5 i ( i u“ iUu2/(\mi), the corre-
sponding calculations also present no difficulties~at least for
particles in external fields!, because this requires only know
ing the gradient of the potential.
ain

02670
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An important feature of decomposition integration~13! is
that it, being applied to classical dynamics simulations, c
serves the symplectic map of particle’s flow in phase spa
This is so because separate shifts of positions~7! and veloci-
ties ~14! do not change the phase volume. The time reve
ibility S(2t)R(t)5R(0) of solutions@following from the
property S 21(t)5S(2t) of evolution operatorS(t)5eLt#
can be reproduced exactly as well by imposing additio
constraints on the coefficientsap , bp , andcp . In particular,
for velocitylike decompositions such constraints read:a1
50, ap115aP2p11 , bp5bP2p11, and cp5cP2p11. Then
single-exponential subpropagators will enter symmetrica
into the decompositions, providing automatically the r
quired reversibility. The case when the operators of shift
velocity and position are replaced by each other in the res
ing symmetrical decomposition is also possible. This lead
a positionlike integration that can be reproduced from E
~13! at ap5aP2p11 , bp5bP2p , andcp5cP2p at bP50 and
cP50.

The above symmetry will result in its turn to automat
disappearing of all even-order terms in the error funct
O(DtK11). For this reason, the orderK of time-reversible
~self-adjoint! algorithms may accept only even numbers (K
52,4,6, . . . ). Thecancellation of the remaining odd-orde
terms up to a given order will be provided by fulfilling a s
of basic conditions forap , bp , and cp . For example, the
condition (p51

P ap5(p51
P bp51 is required to cancel the

first-order truncation uncertainties. Then the error funct
can be cast in the form

O~DtK11!5O3Dt31O5Dt51O7Dt71•••1OK11DtK11.
~15!

In order to kill higher odd-order truncation terms in Eq.~15!,
let us write down explicit expressions forO3 , O5, andO7
~this will be enough to derive algorithms up to the eigh
order!. Expanding both the sides of Eq.~13! into Taylor’s
series, and collecting the terms with the same powers ofDt
one finds
O35a†A,@A,B#‡1b†B,@A,B#‡, ~16!

O55g1†A,@A,†A,@A,B#‡#‡1g2†A,@A,†B,@A,B#‡#‡1g3†B,@A,†A,@A,B#‡#‡1g4†B,@B,†A,@A,B#‡#‡, ~17!

O75z1†B,@B,†A,@B,†A,@B,A#‡#‡#‡1z2†B,@B,†B,@A,†A,@B,A#‡#‡#‡1z3†B,@B,†A,@A,†A,@B,A#‡#‡#‡

1z4†B,@A,†B,@A,†A,@B,A#‡#‡#‡1z5†A,@B,†B,@A,†A,@B,A#‡#‡#‡1z6†A,@B,†A,@B,†A,@B,A#‡#‡#‡

1z7†B,@A,†A,@A,†A,@B,A#‡#‡#‡1z8†A,@B,†A,@A,†A,@B,A#‡#‡#‡1z9†A,@A,†B,@A,†A,@B,A#‡#‡#‡

1z10†A,@A,†A,@A,†A,@B,A#‡#‡#‡. ~18!
o
Here we take into account the fact that the operatorsB andC
commute between themselves, i.e.,@B,C#50, so that any
occurrence of constructions containing the ch
†B,@B,†A,B‡#‡ has been ignored~in particular, for fifth-order
truncation termO5 this has allowed us to exclude the tw
zero-valued commutators †B,@B,†B,@A,B#‡#‡ and
†A,@B,†B,@A,B#‡#‡). The multipliers a, b, g124, and
z1210, arising in Eqs.~16!–~18!, are functions of the coeffi-
1-4
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cientsap , bp , andcp , wherep51,2, . . . ,P. The concrete
form of these functions will depend onP and the version
~velocity or position! under consideration.

The most simple way to obtain explicit expressions
the multipliers consists in the following. First, since we a
dealing with self-adjoint schemes, the total number of sing
exponential operators~stages! in Eq. ~13! is actually equal to
S52P21, i.e., it accepts only odd values~mention that one
of the boundary set of coefficients is set to zero,a150 or
bP5cP50). Then we can always choose a central sing
exponential operator, and further consecutively applyingP
21 times the two types of symmetric transformation,

eW (n11)1O(n11)
5eAa(n)DteW (n)1O(n)

eAa(n)Dt,

eW (n11)1O(n11)
5eBb(n)Dt1Cc(n)Dt3eW (n)1O(n)

eBb(n)Dt1Cc(n)Dt3

~19!

come to factorization~13!, where

W5~nA1sB!Dt,

andO is defined by Eq.~15!. The quantitiesa(n), b(n), and
c(n) are related toap , bp , andcp , respectively~the relation-
ship betweenn andp is determined below!. For velocitylike
decomposition with evenP or positionlike at oddP, the cen-
tral operator is correspondingly eAa(P22)/211Dt or
eAa(P21)/211Dt. So that here we must puts (0)50 as well as
a (0)5b (0)5g124

(0) 5z1210
(0) 50 and let either n (0)

5a(P22)/211 or n (0)5a(P21)/211 on the very beginning (n
50) of the recursive procedure. The start of the proced
should be performed with the second line of Eq.~19! at
b(0)5b(P22)/2 and c(0)5c(P22)/2 or b(0)5b(P21)/2 and c(0)

5c(P21)/2 with further consecutive decreasing the indexp by
unity with increasing the numbern51,2, . . . ,P21 at a(n)

[ap , b(n)[bp , andc(n)[cp in both the lines of transfor-
mation ~19!. For velocitylike decomposition with oddP or
positionlike at even P, the central operator will be
eBb(P21)/211Dt1Cc(P21)/211Dt3 or eBb(P22)/211Dt1Cc(P22)/211Dt3,
corresponding tos (0)5b(P21)/211 and b (0)5c(P21)/211 or
s (0)5b(P22)/211 and b (0)5c(P22)/211, respectively, with
n (0)50 anda (0)5g124

(0) 5z1210
(0) 50. In this case, the proce

dure should be started with the first type of transformation
a(0)5a(P21)/211 or a(0)5a(P22)/211 with decreasingp at
increasingn for b(n)[bp , c(n)[cp , and a(n)[ap in Eq.
~19!.

The recursive relations between the multipliersn, s, a,
b, andg124 corresponding to the first line of Eq.~19! are

n (n11)5n (n)12a(n), s (n11)5s (n), ~20!

a (n11)5a (n)2a(n)s (n)~a(n)1n (n)!/6, ~21!

b (n11)5b (n)2a(n)s (n)2/6, ~22!

g1
(n11)5g1

(n)1a(n)~a(n)1n (n)!@7~a(n)217a(n)n (n)

1n (n)2!s (n)260a (n)#/360,
02670
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g2
(n11)5g2

(n)1a(n)~30a (n)s (n)230a(n)b (n)230b (n)n (n)

13a(n)2s (n)212a(n)n (n)s (n)21n (n)2s (n)2!/180,

~23!

g3
(n11)5g3

(n)1a(n)s (n)@~8a(n)2112a(n)n (n)1n (n)2!s (n)

2120a (n)#/360,

g4
(n11)5g4

(n)1a(n)s (n)@~6a(n)1n (n)!s (n)2260b (n)#/180.

For the second type of transformation the relations read

n (n11)5n (n), s (n11)5s (n)12b(n), ~24!

a (n11)5a (n)1b(n)n (n)2/6, ~25!

b (n11)5b (n)1@12c(n)1b(n)n (n)~b(n)1s (n)!#/6, ~26!

g1
(n11)5g1

(n)2b(n)n (n)4/360,

g2
(n11)5g2

(n)2n (n)$60a (n)b(n)

2n (n)@30c(n)2b(n)n (n)~6b(n)1s (n)!#%/180,

g3
(n11)5g3

(n)1b(n)n (n)@60a (n)1n (n)2~4b(n)2s (n)!#/360,
~27!

g4
(n11)5g4

(n)2@30a (n)b(n)~b(n)1s (n)!2n (n)~30b (n)b(n)

160b(n)c(n)23b(n)3n (n)130c(n)s (n)

22b(n)2n (n)s (n)2b(n)n (n)s (n)2!#/180.

The relations forz1210 are presented in the Appendix. I
such a way, at the end of the recursive process~i.e., afterP
21 steps! the multipliers can readily be obtained. The for
of the first two multipliers are particularly simple and look
n5(p51

P ap and s5(p51
P bp . So that, as was already men

tioned above, puttingn51 ands51 will cancel the first-
order truncation uncertainties~because the resulting expo
nential propagator must behave likee(A1B)Dt). Next
multipliers should be set to zero and we come to the nec
sity of solving a system of nonlinear equations~so-called
order conditions! with respect toap , bp , andcp . We shall
now consider actual self-adjoint algorithms of ordersK52,
4, 6, and 8.

3. Force-gradient algorithms of order two

Putting P52 in Eq. ~13! with a150, b15b251/2, a2
51, and c15c2[j leads to the following velocity-force-
gradient algorithm of the second (K52) order:

e(A1B)Dt1O(Dt3)5eB(Dt/2)1jCDt3eADteB(Dt/2)1jCDt3,
~28!

with a51/12 andb51/2412j. Note that here and below
for reducing the number of unknowns, we will always ta
into account in advance the symmetry of coefficientsap , bp ,
and cp as well as the fulfilling the first-order conditionsn
5(p51ap515(p51bp5s when writing decomposition
1-5
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formulas. Then solving the equationb50 yieldsj521/48
and we come to the already found integrator~12!. It is worth
remarking that negative values of quantitiescp at force gra-
dients have nothing to do with the above problem of po
tiveness of time coefficients arising at velocities and forc
i.e., for ap andbp . The reason is that the incremental velo
ity bpaDt1cpGDt3 in Eq. ~14! can be rewritten as (bpa
1cpGDt2)Dt[bpãDt, and thus treated as the veloci
changing in a modified step-size-dependent acceleration
ã5a1(cp /bp)GDt2.

The position counterpart of Eq.~28! is obtained from Eq.
~13! at a150, a15a251/2, b151, b250, c1[j, and c2
50, which yields

e(A1B)Dt1O(Dt3)5eA(Dt/2)eBDt1jCDt3eA(Dt/2), ~29!

for which a521/24 andb521/121j. Letting j51/12
will minimize the third-order truncation errors to the valu
a†A,@A,B#‡Dt3, which is even twice smaller in magnitud
than that of the velocity version. Note, however, that for bo
versions~28! and ~29!, which require one force plus on
force-gradient evaluations per time step, the order of integ
tion is not increased with respect to the usual~when j50)
Verlet integrators requiring only one force recalculation.
view of this, the applying force gradients in a particular ca
of P52 can be justified only for strongly interacting system
when the kinetic partA of the Liouville operatorL is much
smaller than the potential partB, i.e., whenL5«A1B with
«!1. Then the remaining parta†A,@A,B#‡Dt3 of local un-
certainties will behave like}«2 and can be neglected.

4. Force-gradient algorithms of order four

Further increasingP on unity allows us to kill exactly
both the multipliersa andb, which is needed for obtaining
fourth-order (K54) integrators. So that choosingP53
leads to the velocitylike propagation

e(A1B)Dt1O(Dt5)5eBlDt1jCDt3eA(Dt/2)eB(122l)Dt1xCDt3

3eA(Dt/2)eBlDt1jCDt3 ~30!

following from Eq. ~13! at a150, a25a351/2, b15b3
5l, b25122l, c15c35j, andc25x. Here relations~21!,
~22!, ~25!, and~26! come to the two order conditions

a52
126l

24
50, b52

1

12
1

l

2
2

l2

2
12j1x50,

with three unknownsl, j, andx. The first unknown is im-
mediately obtained satisfying the first condition,

l5
1

6
. ~31!

The second equality is then reduced to 2j1x51/72, result-
ing in a whole family of velocity-force-gradient algorithm
of the fourth order. In general, such algorithms will requ
two force and two force-gradient recalculations per tim
step.
02670
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Remembering that we are interested in the derivation
most efficient integrators, three cases deserve to be con
ered. The two of them are aimed to reduce the numbe
force-gradient recalculations from two to one. This is po
sible by choosing either

j50, x5
1

72
~32!

or

x50, j5
1

144
. ~33!

In the third case we will try to minimize the norm

g5Ag1
21g2

21g3
21g4

2 ~34!

of fifth-order truncation errorsO(Dt5) at j5” 0 and x
51/7222j5” 0, treatingj as a free parameter. In view o
recursive relations~23! and~27!, explicit expressions for the
components ofO(Dt5) are

g15
7230l

5760
, g25

1

480
2

x

24
2

l2

24
1

j

6
,

g35
1

360
2

l

48
1

l2

24
,

g45
1

120
2

l

16
1

7l2

48
2

l3

8
1

j

6
2

x

2 S 1

3
2l D .

Then taking into account Eq.~31! one finds the function

g5
1

135A2048
A19112 240j16 480 000j2

with the minimumgmin5A661/43 200'0.000 595 at

j52
17

18 000
, x5

71

4500
. ~35!

At the same time, the values ofg corresponding to first two
algorithms ~32! and ~33! constitute A19/2048/135
'0.000 713 and 7A17/8640'0.003 34, respectively.

Position version of Eq.~30! reads

e(A1B)Dt1O(Dt5)5eAlDteB(Dt/2)1jCDt3eA(122l)Dt

3eB(Dt/2)1jCDt3eAlDt ~36!

and is obtained from Eq.~13! at P53 with a15a35l, a2
5(122l), b15b251/2, c15c25j, andb35c350. Here,
the number of unknowns coincides with the number of
order conditions,

a5
1

12
2

l

2
1

l2

2
50, b5

1

24
2

l

4
12j50,

the solving of which yields two solutions,
1-6
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l5
1

2 S 17
1

A3
D , j5

1

48
~27A3!. ~37!

Then the norm of truncation uncertaintiesO(Dt5) appearing
in Eq. ~36! is g5(1873740A2187)1/2/2160, so that the pref
erence should be given to sign ‘‘–’’ in Eq.~37!, because this
leads to a smaller value,g2'0.000 715, ofg ~whereasg1

'0.0283). Position algorithm~36! needs, like velocity ver-
sion ~35!, the same number of two force and force-gradie
evaluations per time step.

Integrators~32! and~37! have been previously derived b
Suzuki @24# based on McLachlan’s method of small pertu
bation @33# and referred by Chin@26# to schemesA and B,
respectively. Algorithms~33! and ~35! will be labeled by us
asA8 andA9. While schemeA8 seems to have no advantag
over theA integrator, algorithmA9 corresponds to the bes
accuracy of the integration, because it minimizesg. It re-
quires, however, one extra force-gradient evaluation a
thus, can be recommended for situations when this eva
tion does not present significant difficulties.

With the aim of considerably decreasing the truncat
errors with a little additional computational efforts, Chin@26#
has proposed to consider extended force-gradient algorit
of the fourth order. This has been achieved by increasing
number of force recalculations on unity with respect to
necessary minimum, i.e., choosingnf53. At the same time,
the number of force-gradient evaluations was fixed to
minimal valueng51. Within our general approach, it is po
sible to introduce two fourth-order schemes satisfying
above requirements. The schemes are

e(A1B)Dt1O(Dt5)5eAuDteBlDteA(122u)(Dt/2)eB(122l)Dt1xCDt3

3eA(122u)(Dt/2)eBlDteAuDt ~38!

and

e(A1B)Dt1O(Dt5)5eBlDt1jCDt3eAuDteB(122l)(Dt/2)eA(122u)Dt

3eB(122l)(Dt/2)eAuDteBlDt1jCDt3, ~39!

following from Eq. ~13! at P54 and corresponding to pos
tionlike and velocitylike integration, respectively. Note th
further we will not present the relationship between the
efficientsap , bp , cp of Eq. ~13! and reduced variable
@such as, for example,u, l, x in Eq. ~38!# in view of its
evidence.

The order conditions for scheme~38! are

a52
1

24
1lS 1

4
2u1u2D50,

b52
1

12
1

l

2
2

l2

2
2lu~12l!1x50,

and solving them one obtains

u5
1

2
6

1

A24l
, x5

16A6l~12l!

12
. ~40!
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Relations~40! constitute a family of extended force-gradie
position algorithms~38! of the fourth order withl being a
free parameter. Chin@26# has introduced an algorithm like
Eq. ~38! in somewhat another way, namely, as a symme
product of two third-order schemes. This results only in o
set of time coefficients which can be reproduced~at sign
‘‘–’’ ! from Eq. ~40! as a particular case corresponding to

l5
3

8
, u5

1

6
, x5

1

192
~41!

and has been referred to as schemeC.
Solution~41! may not, however, be necessarily optimal

view of the fact that it does not minimize the normg @see
Eq. ~34!# of truncation uncertaintiesO(Dt5). Indeed, the
components ofg for scheme~38! are

g152
1

1920
1

1

6912l
, g25

665A6l

2880
,

g352
1

360S 3

2
6

5

A96l
65A l

24D ,

g452
1

1440
~365A24l145l230l2!,

where Eq.~40! has been used to express the functiong(l) in
terms of one parameterl exclusively. The global minimum
of this function isgmin'0.000 141 and is achieved~at sign
minus! at

l50.247 093 958 039 084 2, and thus

u50.089 358 047 632 201 57,

x50.006 938 106 540 706 989 ~42!

~all results found numerically will be presented within si
teen significant digits for schemes up to the eighth order
within thirty two digits for order ten and higher!. On the
other hand, the value ofg corresponding to schemeC @Eq.
~41!# is equal only toA87 817/414 720'0.000 715, i.e., it is
approximately five times larger than that of the optimiz
algorithm ~42!. The last algorithm we will designate a
schemeC8.

A similar pattern is observed in the case of extend
velocity-force-gradient integration~39!. Previously, Chin and
Chen@31# have indicated that for quantum mechanics sim
lations the integration of such a type is more preferable t
positionlike scheme~38!, because it requires a fewer numb
of spatial Fourier transforms. Again using the symmet
product of two third-order integrators to increase the or
from three to four, they have obtained the following set:

l5
1

8
, u5

1

3
, j5

1

384
~43!
1-7
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of time coefficients and referred to it as schemeD. We have
realized that this set is not the only one possible and foun
whole family of solutions@which includes Eq.~43!#, namely,

l5
1

12S 61
1

u~u21! D , j52
1

288S 62
1

u~u21!2D ,

whereu should be considered as a free parameter. The o
mal solution, which minimizes the normg of fifth-order er-
rors to the valuegmin'0.000 855, is

l54.432 204 907 934 76831022,

u52.409 202 729 169 54331021,

j54.179 297 897 540 42031023 ~44!

and will be labeled as schemeD8. At the same time, the
norm of errors corresponding to schemeD @Eq. ~43!# is equal
to g5A237 457/414 720'0.00117, i.e., it exceeds the min
mum, which may decrease the precision of the calculatio

As can be ensured readily, the time coefficients arising
basic operatorsA andB under exponentials are positive fo
all the fourth-order force-gradient algorithms described
this subsection. Therefore, contrary to usual force For
Ruth-like schemes, such algorithms can simulate dynam
processes in all areas of physics and chemistry without
principal restrictions.

5. Force-gradient algorithms of order six

Beginning fromP55, the force-gradient factorization be
ing written in velocity representation allows to eliminate t
components of truncation uncertainties up to the sixth or
(K56) inclusively. In view of Eq.~13!, such a representa
tion reads

e(A1B)Dt1O(Dt7)

5eBqDt1mCDt3eAuDteBlDt1jCDt3eA(122u)(Dt/2)

3eB(122(l1q))Dt1xCDt3eA(122u)(Dt/2)eBlDt1jCDt3

3eAuDteBqDt1mCDt3. ~45!

The number of unknowns in propagation~45! is the same as
the number of order conditions which now take the form

a5lS 1

4
2u1u2D2

1

24
~126q!50,

b5x2
1

12
@1224m26l2~2u21!26q16q2

26l~2u21!~2q21!224j#50,

g15
1

5760
@7230l~2u21!2~114u24u2!230q#50,
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g25
1

480
@1220x180m220l2~128u118u2212u3!

220q2120l~2u21!~u12q26uq!180j

2480uj1480u2j#50,
~46!

g35
1

720
$2230l2~2u21!3215q130q2215l~2u21!2

3@124q2u~4q22!#%50,

g45
1

240
$2140m230l3~2u21!2240x@11l~6u23!

23q#215q135q2230q325l2~2u21!@7218q

16u~2q21!#15l~2u21!@3214q118q212u~1

26q16q2!#140j2240uj1480uqj%50.

The unique real solution to system~46! is

u5
1

2
1

A3 @675175A6

30
1

5

2A3 @675175A6
, q5

u

3
,

l52
5u

3
~u21!, j52

5u2

144
1

u

36
2

1

288
,

x5
1

144
2

u

36S u

2
11D , m50. ~47!

Solution ~47! constitutes a velocity-force-gradient algorith
of the sixth order with four force and three~since m50)
force-gradient evaluations per time step, i.e., withnf54 and
mg53. Its advantage over usual sixth-order integrators c
sists in the fact that it is composed of a considerably sma
number, namely,S52P2159, instead of 15, of single ex
ponential operators. The norm

z5A(
k51

10

zk
2 ~48!

of seventh-order truncation errorsO(Dt7) @see Eq.~45!#,
corresponding to solution~47!, is equal toz'0.001 50. Note
also that the position version of decomposition~45! does not
exist atP55, because then the number of unknowns is l
than the number of order equations, resulting in the abse
of solutions.

As has been shown in the preceding subsection for
case of fourth-order integration, algorithms with minim
numbersnf of force evaluation may not lead to optimal s
lutions. The reason is that slightly increasingnf may signifi-
cantly decrease the local errors and thus overcompensat
increased computational efforts. So that increasingnf as well
1-8
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asP on unity~note thatnf5P21) and not changingng , i.e.,
choosingP56 with nf55 andng53, it is possible to derive
from decomposition~13! up four ~two velocitylike and two
positionlike! extended sixth-order schemes. They are

CACABABACAC, CABACACABAC,

ABACACACABA, ACABACABACA, ~49!

where A and B denote exponential operatorseAapDt and
eBbpDt, respectively, whereas letterC corresponds to
eBbpDt1CcpDt3. Each of these extended schemes has itself
respondingly six, eight, four, and two sets of real solutio
for time coefficients. We have realized that the smallest v
ues of the normz @see Eq.~48!# of local errorsO(Dt7)
within the sets are 0.000 026 4, 0.000 014 7, 0.000 146,
0.000 006 07, respectively. So that the last scheme shoul
considered as the best. The more explicit form for it is

e(A1B)Dt1O(Dt7)

5eArDteBqDt1mCDt3eAuDteBlDteA[122(u1r)](Dt/2)

3eB[122(l1q)]Dt1xCDt3eA[122(u1r)](Dt/2)eBlDt

3eAuDteBqDt1mCDt3eArDt, ~50!

with the optimal solution

r50.109 705 972 394 868 2,

u50.414 063 226 731 083 1,

q50.269 331 584 893 530 1,

l51.131 980 348 651 556,

x520.013 246 386 434 160 52,

m50.000 864 216 133 970 616 6, ~51!

corresponding toz50.000 006 07. In such a way, the err
function has been reduced more than in 200 times with
spect to scheme~47! for which z'0.001 50.

6. Force-gradient algorithms of order eight

In the case whenK58 we must satisfy up to 18 orde
conditions, namely,n51, s51, a50, b50, g12450, and
z121050. Taking into account the symmetry of time coef
cients ap , bp , and cp , this can be achieved at least atP
512, i.e., usingS52P21523 single exponential operator
For P512 the velocitylike and positionlike force-gradie
decomposition~13! transforms into the schemes

CACACACACACACACACACACAC ~52!

and

ACACACACACACACACACACACA, ~53!
02670
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respectively. The number of unknowns for both the schem
is also equal to 18 and we can try to solve the system
order conditions with respect to these unknowns.

It is worth remarking that such a system appears to
very cumbersome for schemes under consideration. For
stance, the resulting nonlinear equations of this system b
written explicitly in MATHEMATICA create a file of size 0.5
Mb. In view of this, our attempts to solve the equatio
symbolically have not met with much success. We ment
that all the results presented above for algorithms of order
4, and 6 have been solved analytically or in quadratu
Saying in quadratures we mean that the problem was redu
to finding real zeros for a one-dimensional polynomial o
given order, so that we could identify exactly the number
solutions and their locations. Here the situation is somew
different because we must solve the system using purely
merical approaches, such as the Newton method. As a re
one cannot guarantee that we will find all possible solutio
However, solving the system on a computer during a sign
cantly long period of time, one can say with a great pro
ability that we have found almost all physically interestin
solutions and chosen among them nearly optimal sets.

The numerical calculations have been performed inFOR-

TRAN using the well-recognized Newton solver with nume
cal determination of partial derivatives. The values for no
linear functions ~that constitute the system of equation!
were obtained using recursive relations~20!–~27!, ~A1!, and
~A2!, but not explicit expressions for them to save the p
cessor time and increase the precision of the computati
The initial guesses for solutions were generated at rand
within the interval@22.5,2.5# in each of the eighteen direc
tions. If Newton’s iterations began to diverge at a particu
guess or during the calculations, a next random point w
involved to repeat the process. In such a way, after sev
days of continuously attacking the systems of equations
an Origin 3800 workstation, we found two and five solutio
for schemes~52! and ~53!, respectively. The optimal amon
them are the following:

a150,

b15b1251.839 699 354 244 40231021,

c15c1250,

a25a1256.922 517 172 738 83231021,

b25b1157.084 389 757 230 29931021,

c25c1153.976 209 968 238 71631022,

a35a11523.183 450 347 119 99131021,

b35b1051.981 440 445 033 53431021,

c35c1052.245 403 440 322 73331022,

a45a1056.766 724 088 765 56531021,

b45b9526.409 380 745 116 97431022,
1-9
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c45c959.405 266 232 181 22431024,

a55a9527.207 972 470 858 70631021,

b55b8526.887 429 532 761 40931021,

c55c8527.336 500 519 635 30231022,

a65a853.580 316 862 350 04531021,

b65b751.622 838 050 764 87131021,

c65c752.225 664 796 363 73031022,

a7523.756 270 611 751 48831021,

for velocitylike integration~52!, and

b125c1250,

a15a1254.100 967 473 880 111 192 878 469 300 508 0

31021,

b15b1154.824 930 981 741 495 291 269 584 266 478 5

31023,

c15c1151.474 393 690 779 752 836 471 724 476 073 6

31024,

a25a11523.412 334 575 605 278 048 910 169 737 849

31021,

b25b1051.749 239 486 109 037 560 341 900 137 420 7

31021,

c25c1052.328 845 053 193 254 535 719 496 760 015 5

31024

a35a1052.564 471 402 106 815 049 236 176 163 174 3

31021,

b35b952.930 436 637 095 706 616 436 454 620 428 8

31021,

c35c956.164 865 963 553 596 249 770 561 988 475 2

31023,

a45a952.776 527 397 581 243 839 410 047 624 264 1

31021,

b45b854.744 894 016 845 977 028 423 813 648 251 1

31022,
02670
c45c8521.230 751 686 083 124 071 673 201 696 003 4

31022,

a55a8525.692 626 686 975 377 390 293 965 732 115 9

31021,

b55b7521.529 986 341 174 397 449 921 965 232 047 7

31023,

c55c7527.329 664 855 912 638 538 701 716 164 379 8

31025,

a65a754.662 994 989 012 485 357 679 442 382 019 4

31021,

b6523.742 299 425 900 257 160 684 246 260 379 1

31022,

c651.529 586 099 452 374 473 199 329 384 700 1

31022,
for its positionlike counterpart~53!. The number of force
evaluations per times step for schemes~52! and ~53! is nf
5P21511, whereas the number of force-gradient recal
lations consistsng510 @sincec150 and thus the two bound
ary lettersC in formula ~52! should be actually replaced b
B# andng511, respectively.

In view of a complicated structure of the ninth-order tru
cation uncertaintiesO(Dt9), the optimal solutions just pre
sented have been chosen in a somewhat different way
above, namely, by providing a minimum for the functiond
5maxp51

P (uapu,ubpu). This simplified criterion was used, in
particular, by Kahan and Li@6,22#, when optimizing usual
force algorithms. As a result, we have obtaineddmin[ua5u
5ua9u'0.721 for scheme~52! and dmin[ua5u5ua8u'0.569
for scheme~53!. Sincedmin is smaller in the last case, th
positionlike integration should be considered as more pre
able. Its time coefficients have been presented even w
thirty two significant digits to be used in applications f
very accurate integration. In order to ensure that all the di
shown are correct in both the cases, we have carried o
few additional Newton’s iterations inMAPLE with up 200
digits during the internal computations, and taking as init
guesses the solutions already obtained inFORTRAN.

The positionlike decomposition~53! has another advan
tage over the velocity version~52! in that all the intermediate
(q<P) states in velocity and position space stay during
integration within a given interval@0,Dt#, i.e., 0<(p51

q ap

<1 and 0<(p51
q bp<1. This property may be importan

when solving ordinary differential equations~for specific
physical systems or in pure mathematics applications! with
singularities beyond the interval of the integration~note that,
in particular, any system of differential equations of the fo
d2x/dt25f(x) is reduced to the equations of motion und
consideration in this paper!. Note also that in order to con
struct eighth-order schemes within usual decomposition
proach ~6! ~i.e., without involving any force gradients!, it
could be necessary to apply up to 231821535 ~instead of
1-10
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TABLE I. The basic decomposition force-gradient algorithms.

Algorithm Order nf ng Err3 Err5 Err7 Equations Remarks Labe

CAC 2 1 1 8.3331022 1.3431022 2.2431023 ~28! This work G28
ACA 2 1 1 4.1731022 6.4831023 7.2531024 ~29! This worka G2
BACAB 4 2 1 0 7.1331024 6.3031025 ~30,32! Refs.@24,26# A
CABAC 4 2 1 0 3.3431023 2.7231024 ~30,33! This work A8
CACAC 4 2 2 0 5.9531024 4.8331025 ~30,35! This work A9
ACACA 4 2 2 0 7.1531024 5.5931025 ~36,37! Refs.@24,26# B
ABACABA 4 3 1 0 1.4131024 b

1.0431025 b ~38!,~41!/~42! Ref. @26#/This work a C/C8

CABABAC 4 3 1 0 8.5531024 c
2.2431025 c ~39!,~43!/~44! Ref. @31#/This work D/D8

BACACACAB 6 4 3 0 0 1.5031023 ~45!,~47! This work G68
CACABABACAC 6 5 3 0 0 2.6431025 ~49! This work G69
CABACACABAC 6 5 3 0 0 1.4731025 ~49! This work G6-
ABACACACABA 6 5 3 0 0 1.4631024 ~49! This work G6-8
ACABACABACA 6 5 3 0 0 6.0731026 ~50,51! This worka G6
BACACACACACA

CACACACACAB 8 11 10 0 0 0 ~52! This work G88
ACACACACACAC

ACACACACACA 8 11 11 0 0 0 ~53! This worka G8

aThe best algorithm within a given order.
bThe value corresponding to schemeC8.
cThe value corresponding to schemeD8.
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23! single exponential propagators. Such schemes h
never been derived by decomposition~6! because of the se
rious technical difficulties. They can be explicitly introduce
only by compositions of lower-order integrators~see the fol-
lowing section!. Instead, using generalized scheme~13! has
allowed us to derive eighth-order algorithms by direct d
compositions~the force-gradient algorithms have been p
sented in Sec. II B 5 for order six!.

All the decomposition algorithms obtained by us in Se
II B 3, II B 4, II B 5, and II B 6 are collected in Table I. Here
the designations Err3, Err5, and Err7 relate to the no
Aa21b2, g, and z of correspondingly third-, fifth-, and
seventh-order truncation errors@see Eqs.~6!, ~15!–~18!, ~34!,
and ~48!#, whereasnf and ng denote the numbers of forc
and force-gradient evaluations per time step. The opti
algorithms for orders 2, 4, 6, and 8 are labeled byG2, C8,
G6, andG8, respectively. Among other schemes presen
for each given order, such algorithms reduce the trunca
uncertainties to a minimum. Taking into account that t
reduction is achieved at the same or nearly the same com
tational efforts, the optimal algorithms should be conside
as the best not only with respect to their precision but
view of the overall efficiency as well~see also comments o
this in Sec. III!.

Finally, it is worth remarking that the problem of con
structing algorithms with only positive coefficientsap andbp
for orders six and higher still remains. We mention that
order four, this problem has been resolved~see Sec. II B 4!
by transferring the force-gradient component of truncat
uncertainties into the exponential propagators. For orderK
>6, additional higher-order gradients should appear un
these exponentials to provide the required positiveness.
analysis has shown, however, that such high-order expo
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tials ~besides their very cumbersome forms! cannot be evalu-
ated in quadratures and need performing implicit calculati
by iteration. In view of this we can come to a conclusion th
beyond fourth order, analytically integrable decompositi
algorithms with purely positive coefficients do not exis
Mathematically rigorous proof of this statement will be co
sidered in our further investigation and presented elsewh

C. Integration by advanced compositions

With increasing the order of integration to ten and high
the construction of algorithms by direct decompositions~13!
becomes inefficient because of a large number of order c
ditions and time coefficients. However, having the alrea
derived force-gradient integrators of lower ordersK, we can
try to compose them as

SQ~Dt !5SK~d1Dt !•••SK~dPDt !•••SK~d1Dt ! ~54!

for obtaining an algorithm of orderQ.K. Then the compo-
sition constantsdp , wherep51,2, . . . ,P, should be chosen
in such a way so as to provide the maximal possible value
Q at a given numberP>2. Note that lower-order propaga
tionsSK(dpDt) enter symmetrically in composition~54! and
their total number 2P21 accepts odd values. So that if
basic integratorSK is self-adjoint, the resulting algorithmSQ
will be self-adjoint as well. The idea of using a formula lik
~54! is not new and has been applied by different authors
previous investigations@1,3,5,6,20–23#. But these investiga-
tions were focused, in fact, on the compositions of us
second-order (K52) schemes~to our knowledge, no actua
calculations of composition constants for fourth- and high
order-based integrators have been reported!. Although using
1-11
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the second-order-based approach allowed to introduce a
rithms to the tenth order@5,6,22#, further increasingQ has
led to unresolved numerical difficulties when finding the c
efficients of the compositions.

Usually, these difficulties are obviated with the help
Creutz and Gocksch’s method@30#. We mention that accord
ing to this method, an algorithm of orderK12 can be de-
rived by triplet concatenation,

SK12~Dt !5SK~DKDt !SK@~122DK!Dt#SK~DKDt !,
~55!

of a self-adjoint integrator of orderK, where DK51/(2
221/(K11)). In particular, Chin and Kidwell@29# starting
from force-gradient algorithm~41! of order four and repeat
ing procedure~55! up to order 12, have indicated a visib
increase in the efficiency of the computation with respec
second-order-based schemes. In this approach, howeve
number of force and force-gradient evaluations~the most
time-consuming part of the calculations! increases too rap
idly with increasingK, namely, as 3(K24)/2 relatively to the
fourth-order integrator.

The present study is aimed to overcome the above p
lems by an explicit consideration of four-, sixth-, and eigh
order-based~force-gradient! algorithms within general com
position approach~54!. This results in a reduction in the tota
number of basic propagations to a minimum and sign
cantly speeds up the integration. The composition algorith
are derived up to the sixteenth order inclusively.

1. Fourth-order based algorithms

In the case whenK54, the basic self-adjoint propagatio
is

S4~t!5eX1t1X 5t51X 7t71X 9t91X 11t
111•••, ~56!

whereX1[A1B. Explicit forms of higher-order truncation
operatorsX5 , X7 , X9 , X11, and so on@which was
previously found forX5 andX7, see Eqs.~17! and ~18!# are
not important within the composition approach. Then f
mula ~54! reduces to series (n50,1, . . . ,P22) of the trans-
formation

SQ
(n11)~Dt !5S4~d(n)Dt !SQ

(n)~Dt !S4~d(n)Dt !, ~57!

with SQ
(0)5S4(dPDt) and d(n)5dP2n21. In view of Eqs.

~56! and ~57!, the structure of resulting propagation can
cast at eachn as

SQ~Dt !5eY1Dt1Y 5Dt51Y 7Dt71Y 9Dt91Y 11Dt111O(Dt13),
~58!

with

Y15q1X1 , Y55q2X5 , Y75q3X71q4@X1 ,X1 ,X5#,

Y95q5X91q6@X1 ,X1 ,X7#1q7@X1 ,X1 ,X1 ,X1 ,X5#,
~59!
02670
o-

-

f

o
the

b-
-

-
s

-

Y115q8X111q9@X1 ,X1 ,X9#1q10@X1 ,X1 ,X1 ,X1 ,X7#

1q11@X1 ,X1 ,X1 ,X1 ,X1 ,X1 ,X5#1q12@X5 ,X1 ,X5#.

Comparing Eqs.~56! and ~58! yields values ofq multipliers
at n50, namely,q1

(0)5dP , q2
(0)5dP

K11 , q3
(0)5dP

K13 , q5
(0)

5dP
K15 , and q8

(0)5dP
K17 , whereas,q4

(0)5q6
(0)5q7

(0)5q9
(0)

5q10
(0)5q11

(0)5q12
(0)50. Expanding both the sides of Eq.~57!

into Taylor’s series with respect toDt, one finds that values
for these multipliers atn.0 can be obtained using the fo
lowing recursive relations:

q1
(n11)5q1

(n)12d(n), q2
(n11)5q2

(n)12d(n)K11,

q3
(n11)5q3

(n)12d(n)K13, q4
(n11)5q4

(n)1d(n)~q1
(n)1d(n)!

3~q1
(n)d(n)K2q2

(n)!/6,

q5
(n11)5q5

(n)12d(n)K15, q6
(n11)5q6

(n)1d(n)~q1
(n)1d(n)!

3~q1
(n)d(n)K122q3

(n)!/6,

q7
(n11)5q7

(n)1d(n)~q1
(n)1d(n)!~q1

(n)2q2
(n)260q4

(n)

17q1
(n)q2

(n)d(n)17q2
(n)d(n)22q1

(n)3d(n)K

27q1
(n)2d(n)K1127q1

(n)d(n)K12!/360,

q8
(n11)5q8

(n)12d(n)K17, q9
(n11)5q9

(n)1d(n)~q1
(n)1d(n)!

3~q1
(n)d(n)K142q5

(n)!/6, ~60!

q10
(n11)5q10

(n)1d(n)~q1
(n)1d(n)!~q1

(n)2q3
(n)260q6

(n)

17q1
(n)q3

(n)d(n)17q3
(n)d(n)22q1

(n)3d(n)K12

27q1
(n)2d(n)K1327q1

(n)d(n)K14!/360,

q11
(n11)5q11

(n)1d(n)~q1
(n)1d(n)!~42q1

(n)2q4
(n)2q1

(n)4q2
(n)

22520q7
(n)211q1

(n)3q2
(n)d(n)1294q1

(n)q4
(n)d(n)

242q1
(n)2q2

(n)d(n)21294q4
(n)d(n)2262q1

(n)q2
(n)d(n)3

1q1
(n)5d(n)K231q2

(n)d(n)4111q1
(n)4d(n)K11

142q1
(n)3d(n)K12162q1

(n)2d(n)K13

131q1
(n)d(n)K14!/15 120,

q12
(n11)5q12

(n)1d(n)~q1
(n)d(n)42q2

(n)!~q2
(n)1d(n)5!/6.

Applying the above relationsP21 times will give the
final values ofq multipliers and thus lead to the desired ord
conditions. For instance, the first condition is very simp
and readsq15dP12(p51

P21dp51. This providesY15X1 and
guarantees@see Eqs.~56!, ~58!, and~59!# that the order of the
composition scheme will be at least not lower than that of
basic scheme, i.e.,Q>4 in our case. All other multipliers
q2 , q3 , q4 , . . . ,qN should be consecutively set to zer
forming higher-order conditions. The total numberN of the
conditions depends on a required orderQ.4 of the compo-
1-12
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sition scheme. In particular, atQ56 we must kill the term
Y5 at fifth-order truncation uncertainties@see Eq.~58!#. Tak-
ing into account Eq.~59!, this results in two order conditions
namely,q151 andq250, which can be satisfied atP52.
Then one obtains a system of equations,q152d11d250,
andq152d1

51d2
550, with respect to two unknowns,d1 and

d2. The system can be solved analytically, and the solutio
d151/(2221/5)[D4 with d25122d1 that coincides~at K
54) with the result of triplet construction~55!. This coin-
ciding is not surprising because, as can be seen easily,
approaches~54! and~55! are identical in a partial case whe
P52 andQ2K52.

With further increasingQ, composition approach~54! will
lead to a more efficient integration. Indeed, choosingQ58
requires that the termY7 in Eq. ~58! should be killed addi-
tionally. This is achieved by puttingq35q450 in Eq. ~59!,
and, therefore, by solving atP54 a system of four nonlinea
equations,q151, q250, q350, andq450 with respect to
the same number of unknownsd1 , d2 , d3, andd4. So that
the minimal number of fourth-order integrators in the eig
order composition should be 2P2157, whereas this num
ber is equal to 3(Q2K)/259 when triplet concatenation~55! is
used. Expressions for the non-linear equations can readil
reproduced by applying the corresponding set of recurs
relations~60!. We will not present such expressions expl
itly, because as has been realized, the order equations d
allow to be solved analytically atQ2K>4 for any K>4.
But, these equations can be solved in a quite efficient w
numerically using the Newton’s method. Details of the n
merical calculations are similar to those described in S
II B 6. Here ~when P54, K54, andQ58) we have found
five solutions, and it seems that no other real solutions e
The optimal set is

d150.846 121 147 469 675 7,

d250.158 012 845 800 856 7,

d3521.090 206 660 543 938,

d451.172 145 334 546 811. ~61!

Solution~61! simultaneously leads to the smallest values
the maximal composition coefficient maxp51

4 udpu'1.172 and
the norm (q5

21q6
21q7

2)1/2'0.270 of the main ninth-orde
term Y(Dt9) of truncations uncertainties.

When deriving tenth-order composition algorithms~at K
54), i.e., whenQ510, three additional order condition
arise,q550, q650, andq750, needed to eliminate the term
Y(Dt9) @see Eqs.~58! and~59!#. Then we come in overall to
seven nonlinear equations that can be satisfied by appr
ately choosing composition constantsdp(p51,2, . . . ,P) at
P57. In this case, we have identified more than 150 r
solutions and probably there are some others~we stopped the
search after several days of computation!. Among the solu-
tions found, the optimal set looks
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d150.805 239 957 695 780 823 266 281 698 027 82,

d2520.491 931 059 146 231 010 223 881 388 641 43,

d350.354 492 586 543 984 605 355 292 699 884 83,

d4520.695 739 222 711 402 238 030 364 634 619 97,

d550.399 595 380 303 292 563 593 499 770 878 19,

d650.549 795 686 014 384 527 941 280 315 637 60,
~62!

and d75122(d11d21d31d41d51d6). This set mini-
mizes at once the norm (q8

21q9
21q10

2 1q11
2 1q12

2 )1/2 of the
main eleventh-order termY(Dt11) of truncation errors and
the quantity maxp51

7 udpu to the values 0.00 412 and 0.843
([ud7u), respectively. Here, the number of basic propag
tions ~stages! is 2P21513, i.e., more than two times
smaller than this number 3(Q2K)/2527 within triplet concat-
enation~55!.

In order to introduce twelfth-order algorithms,Q512, on
the basis of fourth-order compositions it is necessary to d
with P512 unknownsdp to fulfill the same number of the
order conditionsq151, andq221250. Here we have found
more than 200 real solutions and perhaps there are some
else. The best among them, which minimizes maxp51

12 udpu to
the value 0.611 ([ud12u), is

d150.173 850 160 930 978 554 360 617 128 583 03,

d250.533 774 798 907 122 079 492 826 539 908 42,

d350.121 301 386 146 683 076 738 022 919 664 95,

d450.296 507 470 338 071 952 734 400 325 056 29,

d5520.599 659 998 573 354 540 184 823 120 082 33,

d650.090 435 812 862 044 371 458 711 304 290 94,

d7520.439 791 462 576 358 068 867 787 481 389 62,

d8520.302 515 529 223 464 950 570 102 407 791 04,

d950.598 958 729 892 479 821 145 459 069 537 12,

d1050.312 364 165 382 755 761 518 162 807 766 96,

d11520.590 812 307 696 478 331 840 904 434 453 03,
~63!

with d125122(p51
11 dp . Thus, the minimum number o

fourth-order stages needed to compose the twelfth-orde
gorithm is 2P21523, instead of up to 3(Q2K)/2581 as in
the case of usual triplet construction~55!.
1-13
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2. Sixth- and eighth-order based algorithms

WhenK56 or 8, the basic propagation reads

S6~t!5eX1t1X 7t71X 9t91X 11t
111X 13t

131••• ~64!

or

S8~t!5eX1t1X 9t91X 11t
111X 13t

131X 15t
151•••, ~65!

respectively. Here, the compositions reduce to the recur
transformation

SQ
(n11)~Dt !5S6,8~d(n)Dt !SQ

(n)~Dt !S6,8~d(n)Dt !, ~66!

with SQ
(0) being equal toS6(dPDt) or S8(dPDt) and n

50,1, . . . ,P22. The left-hand side of expression~66! can
again be presented at eachn as a single exponential,

SQ~Dt !5eY1t1YK11tK111YK13tK131YK15tK151YK17tK171•••,

where now

Y15q1X1 , YK115q2XK11 ,

YK135q3XK131q4@X1 ,X1 ,XK11#,

YK155q5XK151q6@X1 ,X1 ,XK13#

1q7@X1 ,X1 ,X1 ,X1 ,XK11#,

YK175q8XK171q9@X1 ,X1 ,XK15#

1q10@X1 ,X1 ,X1 ,X1 ,XK13#

1q11@X1 ,X1 ,X1 ,X1 ,X1 ,X1 ,XK11#. ~67!

Recursive relations for multipliersq1211, corresponding to
transformation~66!, remain the same in form as in the ca
K54, so that we should merely put eitherK56 or K58 in
Eq. ~60! to obtain the required set of order conditions.

In view of the equivalence of Eqs.~54! and ~55! at Q
5K12, the first step on increasing the order of composit
scheme toQ58 whenK56 or Q510 whenK58 is trivial
and yields P52, d151/(2221/(K11))[DK , and d251
22d1. The next steps on increasingQ to the higher values
K14, K16, andK18 atK56 or 8 are similar to the step
described above forK54. Namely, they lead to the necessi
of solving numerically the system ofP nonlinear equations
q151, q250, . . . ,qP50, with P54, 7, and 11, respec
tively. The only difference from the caseK54 is that atK
56 or 8 andQ5K18, the number of equations reduc
from 12 to P511, because of a somewhat simplified stru
ture of the last truncation operator shown in Eq.~67! with
respect to that appearing in Eq.~59!. So that below we will
present final results only with brief comments for each of
above cases. The best set among the solutions found
identified as the one that minimizes the quantityd
5maxp51

P udpu ~this almost always led to the minimization o
the norm for the main term of truncation errors as well!.

For K56 andQ510 there are five solutions with the be
set
02670
ve
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d150.884 801 393 044 428 625 907 738 636 257 20,

d250.119 224 044 302 066 480 525 932 640 292 66,

d3521.067 727 751 680 577 067 851 837 000 492 5,
~68!

with d45122(d11d21d3) and dmin[ud4u51.127 ~within
three significant digits!. At K58 andQ512 we have found
again five solutions and the optimal one is

d150.908 036 966 672 384 262 845 726 110 229 28,

d250.095 777 180 465 215 511 634 906 238 400 062,

d3521.054 541 279 811 362 759 973 451 973 877 8,
~69!

with d45122(d11d21d3) anddmin[ud4u51.101.
For K56 andQ512 there were more than 150 solution

with the optimal set

d150.647 253 392 063 052 406 053 852 483 920 83,

d250.446 319 415 269 595 769 601 026 012 579 86,

d3520.664 471 336 410 462 210 085 294 529 377 21,

d4520.582 606 195 718 442 488 165 488 090 465 10,

d550.640 816 195 890 131 172 056 343 117 071 57,

d650.318 055 965 988 833 404 309 185 870 317 01,
~70!

and d75122(d11d21d31d41d51d6) with dmin[ud3u
50.664.

WhenK58 andQ514 we have computed more than 15
solutions also and identified among them the following op
mal one:

d150.611 582 017 168 994 873 771 233 170 474 17,

d250.467 630 505 986 821 504 050 786 008 426 81,

d3520.632 450 304 032 720 773 598 897 201 824 31,

d4520.582 233 790 207 205 282 750 723 564 426 67,

d550.621 098 524 510 755 480 596 516 864 109 28,

d650.296 865 552 384 098 265 184 074 830 527 33,
~71!

with d75122(d11d21d31d41d51d6) and dmin[ud3u
50.632.

At K56 andQ514 the best set, among more than 2
solutions realized, is

d150.325 571 630 660 850 807 129 702 179 776 81,

d2520.473 897 717 868 342 226 376 536 537 958 35,
1-14
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d350.543 766 497 635 963 646 702 545 335 244 99,

d4520.640 554 111 412 984 913 342 408 259 734 18,

d550.281 390 250 470 303 225 880 529 717 575 42,

d650.563 457 786 184 056 756 502 290 114 090 13,

d750.642 050 045 975 269 441 816 780 514 774 48,

d8520.169 728 257 723 913 107 218 751 288 814 51,

d9520.579 730 316 690 546 833 925 498 715 149 85,

d1050.273 985 802 830 633 798 706 233 909 797 62,
~72!

with d115122(p51
10 dp anddmin[ud7u50.642.

Finally for K58 andQ516 the optimal solution, among
again more than 200 sets calculated, is

d150.296 422 548 914 130 709 533 124 502 130 71,

d250.552 685 631 853 014 883 248 829 940 187 46,

d3520.581 343 395 355 333 933 156 055 443 099 40,

d450.234 036 652 654 204 812 435 632 023 332 67,

d5520.517 889 589 898 170 553 039 786 588 274 53,

d6520.439 839 754 779 929 205 228 119 705 278 74,

d7520.201 370 781 509 421 699 574 681 119 934 44,

d850.344 128 720 025 288 946 229 759 271 974 16,

d950.030 725 917 609 965 587 988 954 283 097 65,

d1050.486 529 539 607 270 412 812 805 350 314 55,
~73!

with d115122(p51
10 dp anddmin[ud11u50.592.

As can be seen, the quantitydmin decreases with increas
ing Q at anyK ~4, 6, and 8! considered. Besides the improv
ment of the precision of the integration, this leads to an
tension of the region of stability of the compositio
algorithms. Indeed, the constantsdp appear in the composi
tions @see Eq.~54!# in the form of the termdpDt @and its
combinations of different orders when evaluating truncat
uncertaintiesO(DtQ11)#. Then, taking into account thatd
5maxp51

P udpu, the maximal value for the sizeDt of the time
step, at which these uncertainties do not exceed an acc
able level of precision, can be estimated asDtmax;1/dmin .
This also explains a well correlation ofdmin with the mini-
mum for the norm of truncation errors.

Sixth- and eighth-order based compositions may have
vantages over algorithms based on fourth-order scheme
pecially when constructing very precise integrators with h
values ofQ. For instance, in order to derive an integrator
order Q516 on the basis of triplet concatenation~55! of a
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scheme of orderK54, it is necessary to apply 3(Q2K)/2

5729 fourth-order stages. Taking into account that each s
stage requiresnf53 force andng51 force-gradient evalua
tions @see Eqs.~38! or ~39!#, one obtains in total the number
nf52187 andng5729 corresponding to a whole time ste
On the other hand, in view of result~73!, an integrator of
order Q516 can be composed atK58 and P511 using
2P21521 eighth-order stages for each of whichnf5ng
511 @see Eq.~53!#. So that the overall number of force an
force-gradient recalculations will be equal only to 231 tha
much smaller than the above values 2187 and 729 obta
in the caseK54.

III. APPLICATIONS OF FORCE-GRADIENT
ALGORITHMS

A. Molecular dynamics simulations

In molecular dynamics~MD! simulations we dealt with a
system ofN5256 identical (m[mi) particles interacting
through a Lennard-Jones potential,F(r )54u@(s/r )12

2(s/r )6#. The particles were placed in a cubical box
volumeV5L3 and periodic boundary conditions have be
used to exclude the finite-size effects. For the same rea
the initial potential was modified asw(r )5F(r )2F(r c)
2(r 2r c)F8(r c) at r<r c with w(r )50 for r .r c , where
r c5L/2 is the cutoff radius. Then the potentialw and its
first-order derivativew85dw/dr will be continuous func-
tions anywhere inr including the truncation pointr 5r c .
This avoids an energy drift caused by the passage of part
via the surface of truncation sphere as well as singularitie
w8(r ) andw9(r ) at r 5r c . The simulations were carried ou
in a microcanonical ensemble at a reduced density ofn*
5Ns3/V50.845 and a reduced temperature ofT* 5kBT/u
51.7. All runs of the lengthl 510 000 time steps each wer
started from an identical well equilibrated initial configur
tion r(0). Theprecision of the integration was measured
terms of the relative total energy fluctuationsE5Š(E
2^E&)2

‹

1/2/u^E&u, where E5 1
2 ( i 51

N mvi
21 1

2 ( iÞ j
N w(r i j ) and

^& denotes the microcanonical averaging.
The equations of motion were integrated using forc

gradient algorithms~30!, ~36!, and ~38! of the fourth order
within schemesA, A8, B, C, and C8 @see Eqs.~32!, ~33!,
~37!, ~41!, and ~42!, respectively#. For the purpose of com
parison the integration with the help of usual fourth-ord
algorithm by Forest and Ruth~FR! @2# @which represents, in
fact, triplet concatenation~55! of second-order Verlet schem
~8!# has been performed as well. The corresponding res
for the total energy fluctuations as functions of the lengtl
5t/Dt of the simulations are presented in Fig. 1~a! for a
typical reduced time step ofDt* 5Dt(u/ms2)1/250.005. As
can be seen, schemesA, B, andC exhibit a similar equiva-
lence in energy conservation. This is in agreement with
theoretical predictions presented in Sec. II B 4, where
precision of algorithms has been estimated in terms of
normg @Eq. ~34!# of fifth-order truncation errorsO(Dt5). In
particular, for schemesA, B, andC, it has been obtained a
g'0.000 713, 0.000 715, and 0.000 715, respectively. F
ther, as expected, schemeA8 (g'0.003 34) is worse in pre-
1-15
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cision and leads to values ofE which are approximately
0.003 34/0.000 71'5 times larger. Note that in microcanon
cal ensembles the total energy is an integral of moti
E(t)5E(0), so that within approximate MD simulations
smaller values ofE correspond to a better precision of th
integration. It is worth remarking also that another integra
motion, namely, total momentumP5( i 51

N mivi , is con-
served exactly within force-gradient approach~13!. The rea-
sons are that all velocities are updated at once@see Eq.~14!#
during each stage of decompositions and the fact
( i 51

N f i50 as well as( i 51
N gi50 @as can be verified readily

using the structure of Eq.~11!#.
The best accuracy in energy conservation can be achie

within optimized schemeC8 @see Fig. 1~a!# for which g
'0.000 141. It minimizesE to a level of;1025 that is a
factor 0.000 71/0.000 141'5 lower than those related t
schemesA, B, andC. At the same time, the usual FR alg
rithm leads to the worst resultE;1023. We see, therefore
that applying force-gradient approach allows to reduce
physical energy fluctuations up to two orders in magnitu
Let us show now that this overcompensates the increa
computational efforts caused by additional calculations
the force gradients. The processor time used for carrying
these calculations@see Eq.~11!# was nearly three times large
than that needed for evaluations of forces itself. Further,
should take into account that algorithm C8 requiresnf53
force andng51 force-gradient recalculations per time ste
whereasnf53 andng50 for FR scheme. As a result, on
obtains that the sizeDt of one step within FR propagatio
must be (31331)/352 times shorter than in the case
algorithm C8 for spending the same overall processor tim
within both the cases during the integration over a fixed ti
interval. Finally, in view of the fact that the global error an
thus the functionE are proportional to the fourth power o
Dt, i.e., E;Dt4, one finds that, at the above conditions, t
level of conservation of the FR scheme reduces from 1023 to
E;1023/24. So that relative efficiency of schemeC8 with
respect to the FR integrator is actually equal
(1023/24)/10255100/16'6.

In order to ensure that schemeC8 @Eq. ~42!# is indeed the
best among the whole family~40! of C8-like integrators~38!,

FIG. 1. ~a! The total energy fluctuationsE as functions of the
length of the simulations performed using force-gradient algorith
A, A8, B, C, andC8 in comparison with the result of the usual F
scheme.~b! The fluctuationsE obtained within the extendedC8-like
scheme depending on free parameterl at two fixed time steps. The
values ofl related to schemesC andC8 are marked by the vertica
lines. The functiong(l) is plotted by the dashed curve~see the text
for additional explanations!.
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we carried out additional simulations in which the parame
l, being constant within each simulation, varied from o
run to another. The total energy fluctuations obtained in s
simulations at the end of the runs for two~fixed within each
run! undimensional time steps, namely,Dt* 50.0025 and
0.005, are shown in Fig. 1~b! as functions ofl. As can be
observed, the dependenciesE(l,Dt) have the global mini-
mum located at the same pointl'0.247 independent of the
size Dt of the time step. This point coincides complete
with the minimum given by Eq.~42! for the functiong(l)
@see Eq.~34! and relations following just after Eq.~41!#
which is also included in the subset and plotted by a das
curve@where an upper lying part of the curve corresponds
the plus sign in Eq.~40!, whereas a lower lying part as we
as the simulation data are related to the minus sign#, so that
our criterion on measuring the precision of the integration
terms of the norm of local truncated uncertainties is in e
cellent accord. Moreover, the energy fluctuations appea
be proportional to that normg as E(l,Dt);gDt4 and the
coefficient of the resulting proportionality almost does n
depend onl andDt.

In previous studies, algorithms of such a kind have be
tested for classical@26,29# and quantum@31# mechanics sys-
tems composed of a few bodies only~or even one body mov-
ing in an external field!. The present investigations hav
demonstrated that force-gradient algorithms can be used
equal success in statistical mechanics simulations dea
with a great number of particles, i.e., whenN@1. In the last
case, the calculations of force gradients also present no
ficulties. Indeed, during the integration we should first eva
ate usual forcesf i for each particlei, where i 51,2, . . . ,N.
This involves number of operations proportional to the s
ond power ofN. Then in view of the structure of Eq.~11! and
taking into account the fact that particle’s accelerationsai
5f i /mi are already known quantities, the calculations of g
dientsgi will require number of operations proportional t
the same power ofN, i.e., }N2 ~but not to}N3, as it may
look at first sight!. Further reducing the computational effor
is possible, taking into account that functiong(r i j ) @see Eq.
~11!# decreases with increasing the interparticle separa
r i j more rapidly than initial potentialw(r i j ). In such a case
a secondary cutoff radiusRc,r c can be introduced when
evaluatinggi @which is equivalent to puttingg(r i j )50 at
r i j .Rc# in order to speed up the calculations.

B. Celestial mechanics simulations

One of the simplest ways to test force-gradient algorith
of higher orders is to apply them to solution of the tw
dimensional Kepler problem. In particular, this way has be
chosen by Chin and Kidwell@26,29# when testing fourth-
order algorithmsA, B, andC and higher-order iterated coun
terparts of the last scheme. As has been established,
force-gradient scheme is particularly outstanding and
pears to be much more superior than usual nongradient
grators, such as fourth order by Forest and Ruth@2# as well
as by Runge and Kutta@16,17#, sixth order by Yoshida@1#,
etc. In this subsection it will be demonstrated that furth
significant improvement in the effectiveness of the integ

s
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CONSTRUCTION OF HIGH-ORDER FORCE-GRADIENT . . . PHYSICAL REVIEW E 66, 026701 ~2002!
tion can be reached by replacing standard iteration proce
~55! by advanced composition approach~54!. Moreover, us-
ing our sixth- and eighth-order force-gradient algorithms
the basis for the composition has allowed us to perform
computations with extremely high precision which excee
by several orders the accuracy observed within stand
fourth-order based schemes.

We will consider the motion of a particle~planet! of mass
m1 moving in the ~gravitational! field w(r )52c/r of the
central body~sun! with massm2@m1, where c.0 is the
constant responsible for intensity of the interaction. For s
plifying the calculations, one neglects the influence of
other (i 53,4, . . . ,N) particles~planets, for whichmi!m2)
in the ~solar! system. Then the motion can be described
the following system of two equations:

dr

dt
5v,

dv

dt
52

r

r 3
, ~74!

where r5r12r2, and for clarity of presentation we hav
used units in which the reduced massm1m2 /(m11m2) and
the interaction constantc are equal to unity. Since the quan
tity E5v2/221/r ~which is associated with the total energ!
presents an integral of motion for Eq.~74!, it should be con-
served during the integration. However, this will be so
these equations are solved exactly. In numerical simulati
the local truncation uncertaintiesO(DtQ11) accumulate step
by step during the integration process, leading att@Dt to the
global errorsO(DtQ), whereQ denotes the order of a sel
adjoint algorithm. So that the quantityE can be presented a
a function of time as

E~ t !5E01EQ~ t !DtQ1O~DtQ12!, ~75!

whereE0[E(0) andEQ is the main step-size independe
error coefficient.

In our simulations we solved two-dimensional Kepl
problem ~74! with the same initial conditionsr (0)5(10,0)
and v(0)5(0,1/10) as those used by previous auth
@26,29# to make comparative analysis more convenient. T
resulting highly eccentric (e50.9) orbit provides a nontrivia
testing ground for trajectory integration. The numerical
fectiveness of each algorithm was gauged in terms of m
error coefficient EQ5 limDt→0@E(t)2E0#/DtQ @see Eq.
~75!#. It can actually be extracted from the fraction@E(t)
2E0#/DtQ by choosing smaller and smaller time stepsDt to
be entitled to completely ignore next higher-order corr
tions O(DtQ12). This typically occurs in the neighborhoo
of Dt;P/5000, whereP5p/(2uE0u3)1/2 is the period of the
elliptical orbit. Since we are dealing with algorithms of hig
ordersQ and small step sizesDt, all the calculations have
been carried out inFORTRAN using quadruple~instead of
double, as for MD simulations! precision arithmetics for en
suring the correctness of the results.

The normalized energy deviationsEQ /E0 obtained in the
simulations applying fourth-, sixth-, eighth-, tenth-, twelfth
and fourteenth-order algorithms are plotted in Figs. 2~a!,
2~b!, 2~c!, 2~d!, 2~e!, and 2~f!, respectively, as functions o
time t during one periodP of the orbit. These deviations ar
02670
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substantial only near mid period when the particle is at
closest position to the attractive center. Note also that wit
symplectic integration, the nonconservation of energy for
riodic orbits is periodic and its averaged~over timest@P)
value is bounded and independent oft ~the independence o
averaged energy fluctuations att@Dt has already been dem
onstrated in MD simulations, see Fig. 1!. That is why we
presented the results in Fig. 2 within a narrow region of tim
neart;P/2, where the maximal deviations ofEQ will give a
main contribution to the overall fluctuations.

In the case of fourth-order integration we used most ty
cal algorithmsA, B, C, andC8 @see Eqs.~32!, ~37!, ~41!, and
~42!, respectively#. As can be seen from Fig. 2~a!, the pattern
here is somewhat different from that in MD simulation
@please compare with Fig. 1~a!#. The algorithmC is clearly
better than schemesA andB, which confirms the conclusion
of Ref. @26#. On the other hand, integratorC8 does not ex-
hibit an improved precision in energy conservation with
spect to schemeC. Nearly the same was seen when iterati
these algorithms to higher orders with the help of trip

FIG. 2. The normalized energy deviation of a particle in
Keplerian orbit. The results obtained within fourth-, sixth-, eight
tenth-, twelfth-, and fourteenth-order algorithms are shown in~a!,
~b!, ~c!, ~d!, ~e!, and~f!, respectively. The basic algorithms used a
fourth-order schemesA, B, C, andC8, as well as sixth- and eight
order integrators~correspondingly marked asG6 and G8). The
curves related to higher-order algorithms concatenated on the b
of schemeC by standard iterations are labeled by the same letteC
in each the sets. The fourth-, sixth-, and eighth-order based a
rithms constructed within advanced composition approach
marked asS, G6, andG8, respectively~see the text!.
1-17
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construction~55!. In particular, the sixth-orderC8 counter-
part appeared to be even slightly better than the corresp
ing counterpart of schemeC ~see Fig. 2~b!!. At the same
time, higher-order integrators based on schemesA and B
were definitely worse. So that the obvious candidates
fourth-order based iterations~55! and compositions~54! are
schemesC andC8.

In order to understand why schemeC8 does not lead to
the expected improvement over schemeC in this particular
situation, it should be taken into account that we deal wit
small system, actually with one body moving in an effecti
external field. Moreover, such a body moves periodica
and, thus, covers only small part of phase space during
displacement. This is contrary to many-body statistical s
tems, where the phase point may visit considerably wi
regions of phase space. In the latter case, during the ave
ing along the phase trajectories, different componentsg124
of fifth-order local uncertainties@see Eq.~17!# will enter with
approximately the same weights when forming the total e
vector O(Dt5). This has been tentatively assumed wh
writing the normg of that vector in the form of Eq.~34! and
further minimizingg to obtain algorithmC8. In the case of a
few-body system, especially with periodic motion, the abo
weights may differ considerably. This complicates an ana
sis of the truncation terms and makes it impossible to find
exact global minimum for them within any analytical a
proach. Note, however, that even here, the assumption
uniform contribution of truncation-error components wor
relatively well. Indeed, in view of dependencies shown
Figs. 2~a! and 2~b!, we can say that both the schemesC and
C8 are comparable in precision. The same was observed
their higher-order counterparts. For this reason~and to re-
serve more free space for other dependencies!, in Figs. 2~c!–
2~f! we will draw only curves corresponding to schemeC.

When considering the sixth-order integration, we realiz
that direct velocitylike scheme defined by Eqs.~45! and~47!
is much worse~the maximum deviation ofEQ were more
than two orders larger! than its extended positionlike coun
terpart given by Eqs.~50! and~51!. This is in agreement with
a prediction of Sec. II B 5. The result corresponding to
positionlike algorithm is plotted in Fig. 1~b! by the bold
dashed curve marked asG6. As can be seen, all three curv
shown in Fig. 1~b!, namely,C, C8, andG6 are close enough
to each other. But algorithmG6 uses onlynf55 force evalu-
ations per time step, instead ofnf59 needed for iteratedC-
andC8-like schemes~for all these three cases the number
force-gradient evaluations is the same and equal tong53).
Therefore, for order six, direct decomposition approach~13!
leads to more efficient integration than concatenations
fourth-order schemes.

Beginning from order eight, the above concatenatio
based on standard iterations~55! and advanced composition
~54! will result in completely different integrators. The simu
lation data for these iterated and composedC-based integra-
tors are shown in Fig. 2~c! by thin ~marked simply asC) and
bold ~marked asS) solid curves, respectively. The curve
related to tenth- and twelfth-order iteration and composit
integrators~based on the same fourth-order schemeC) are
plotted correspondingly in Figs. 2~d! and 2~e!, and marked
02670
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by the same lettersC and S. We mention thatC-marked
curves have already been presented in the work by Chin
Kidwell @26,29# up to order 12. They are redisplayed by us
order to illustrate the evident superiority of our compositi
approach over the standard iteration method. Indeed, for
iteration integrators (C-marked curves! of ordersQ58, 10,
and 12, the magnitudes of the normalized energy coeffic
EQ /E0 after one period are 1.44, 19.24, and 424.8, resp
tively. On the other hand, the magnitudes related to the c
position integrators (S-marked curves! constitute corre-
spondingly 0.0953, 0.0577, and 1.41, i.e., they a
approximately 15, 330, and 300 times smaller. In additi
the composition integrators are faster with respect to th
iteration versions in factors 9/7, 27/13, and 81/23 forQ58,
10, and 12, respectively~see Sec. III A 1!, and thus the re-
sulting efficiencies will increase yet.

What about sixth- and eight-order-based composit
schemes atQ>8? First of all, let us consider the case
eight-order integration. Here, the direct scheme chosen
position-like integrator~53! @it leads to better energy conse
vation with respect to its velocitylike counterpart~52!#. The
result corresponding to this integrator is plotted in Fig. 2~c!
by the dashed curve marked asG8. As can be seen, th
fourth-order-based composition scheme (S curve! is better at
Q58 with respect to both directG8 and iteratedG6-like
versions. With increasing the order to 10 and 12, they
become nearly equivalent in the accuracy of energy con
vation. But fourth-order-based approach requires somew
fewer number of operations. For instance, for order 12, o
obtains that the numbers of force and force-gradient eva
tions per time step are equal for it tonf52333569 and
ng523, respectively, whereas these numbers for sixth-
eighth-order-based compositionsG6 and G8 are nf513
35565, ng51333539, andnf5ng57311577 ~where
G6 integrator requires less operations thanG8 scheme!.
However, beginning from order 14, the situation revers
The fourth-order-based compositionS approach is no longe
accessible~because of the absence of explicit expressions
its time coefficients here!. On the other hand, applying th
standard fourth-order-based iterationC method is very inef-
ficient. In particular, atQ514 the maximal energy deviatio
within this method isuE14/E0umax59901 with nf52135
5729 andng521335243. At the same time, the highe
order-based composition schemes lead to much accurat
sults, namely,uE14/E0umax52.065 withnf521355105 and
ng52133563 for G6- as well asuE14/E0umax50.101 with
nf5ng5133115143 for G8-based schemes~where the
better precision for the last scheme compensates to s
extent its increased values for quantitiesnf andng). We see,
therefore, that the relative efficiencies ofG6- andG8-based
schemes with respect toC approach constitute about 104–
105. Finally, in the caseQ516 ~not shown in Fig. 2! we have
obtained the values uE16/E0umax52.433105 and
uE16/E0umax548.16 corresponding toC- and G8-based
schemes, respectively. Taking into account the numbers onf
andng for these schemes presented at the end of Sec. II
one can conclude that the efficiency increases here also
proximately in 104 to 105 times.
1-18
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IV. CONCLUDING REMARKS

In this work we have formulated a general theory of co
struction of force-gradient algorithms for solving the equ
tions of motion in classical and quantum systems. This
allowed us to extend considerably the class of analytic
integrable symplectic schemes. The algorithms derived
clude self-adjoint direct decomposition integrators of ord
two, four, six, and eight as well as their composition cou
terparts up to the sixteenth order in the time step. As
been proven theoretically and confirmed in actual numer
simulations, these algorithms lead to significant impro
ment in the efficiency of the integration with respect to e
isting force-gradient and nongradient schemes. It has b
demonstrated that force-gradient algorithms can be used
equal success for describing the motion in few-body class
and quantum mechanics systems as well as for perform
statistical molecular dynamics observations over ma
particle collections. In all the cases the calculation of fo
gradients presents no difficulties and requires computatio
efforts comparable with those needed to evaluate u
forces itself. The proposed algorithms may be especially u
ful for the prediction and study of very subtle dynamic
effects in different areas of physics and chemistry includ
the problems of astrophysical interest, whenever the pre
integration of motion during very long times is desirable.

The algorithms introduced exactly reproduce such imp
tant features of classical dynamics as time reversibility a
symplecticity. This explains their excellent energy conser
tion and stability properties. In this context it is worth me
tioning another class of~nongradient! integrators recently de
veloped @34# on the basis of a modified Runge-Kut
approach. Like the force-gradient algorithms, the Run
Kutta-like integrators also allow to produce time reversib
and symplectic trajectories in phase space with, in princi
arbitrary order in precision. However, such integrators
implicit and require cumbersome systems of globa
coupled~via positions and forces of all particles! nonlinear
equations to be solved by expensive iterations at each ste
the integration process. Since, in practice, such equat
cannot be solved exactly, the time reversibility and sympl
ticity can be violated. This may lead, in particular, to ins
bilities in long-term energy conservation, i.e., to the sa
problem inherent in the traditional~nonsymplectic! Runge-
Kutta method~see the Introduction!. All these disadvantage
are absent in the present approach, where the phase tra
ries are propagated explicitly in time by applying conse
tive simple shifts of particles in velocity and position spa
with exact preservation of the phase volume and reversib
of the generated solutions.

The approach presented can also be adapted to the
gration of motion in more complicated systems, such as s
tems with orientational or spin degrees of freedom, e
where splitting of the Liouville operator into more than tw
parts may be necessary to obtain analytically solvable s
propagators. These and other related problems will be c
sidered in a separate investigation.
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APPENDIX

The recursive relations for the higher-order multiplie
z1210 @see Eqs.~13!, ~15!, and ~18!# corresponding to the
first type of self-adjoint transformations given by the fir
line of Eq. ~19! are

z1
(n11)5z1

(n)1a(n)
„630b (n)211260g4

(n)s (n)263b (n)~6a(n)

1n (n)!s (n)21s (n)3$21a (n)1~27a(n)219a(n)n (n)

1n (n)2!s (n)%…/3780,

z2
(n11)5z2

(n)1a(n)
„336b (n)~6a(n)1n (n)!s (n)225040b (n)2

25040g4
(n)s (n)2s (n)3$336a (n)1~120a(n)2

112a(n)n (n)2n (n)2!s (n)%…/45 360,

z3
(n11)5z3

(n)2a(n)$5040a (n)b (n)1s (n)@5040g2
(n)

284b (n)n (n)2172a(n)3s (n)21n (n)3s (n)2

124a(n)n (n)~n (n)s (n)2242b (n)!

1a(n)2~88n (n)s (n)22672b (n)!#%/15 120,

z4
(n11)5z4

(n)1a(n)$168a (n)@60b (n)2~6a(n)1n (n)!s (n)2#

1s (n)@10 080g2
(n)15040g3

(n)2168b (n)n (n)2

1192a(n)3s (n)215n (n)3s (n)2

16a(n)n (n)~13n (n)s (n)22336b (n)!

1a(n)2~272n (n)s (n)221344b (n)!#%/15 120,

z5
(n11)5z5

(n)2a(n)$2520g4
(n)n (n)17560g3

(n)s (n)

2294b (n)n (n)2s (n)1180a(n)3s (n)32n (n)3s (n)3

184a (n)@120b (n)1~3n (n)222a(n)!s (n)2#

1a(n)2~234n (n)s (n)321512b (n)s (n)!

16a(n)~420g4
(n)2308b (n)n (n)s (n)

13n (n)2s (n)3!%/45 360, ~A1!

z6
(n11)5z6

(n)1a(n)
„18a(n)3s (n)3284a (n)@15b (n)2~a(n)

1n (n)!s (n)2#1a(n)2~15n (n)s (n)32252b (n)s (n)!

16a(n)~210g4
(n)228b (n)n (n)s (n)1n (n)2s (n)3!

12~630g4
(n)n (n)2630g2

(n)s (n)242b (n)n (n)2s (n)

1n (n)3s (n)3!…/7560,
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z7
(n11)5z7

(n)1a(n)
„2520a (n)2284a (n)@8a(n)2112a(n)n (n)

1n (n)2#s (n)1s (n)$5040g1
(n)1@48a(n)4

1120a(n)3n (n)192a(n)2n (n)2118a(n)n (n)3

1n (n)4#s (n)%…/15 120,

z8
(n11)5z8

(n)2a(n)$5040a (n)212520g2
(n)n (n)242b (n)n (n)3

12520g1
(n)s (n)2420a (n)a(n)~a(n)12n (n)!s (n)

169a(n)4s (n)21n (n)4s (n)212a(n)2n (n)~53n (n)s (n)2

2294b (n)!1a(n)3~148n (n)s (n)22294b (n)!

16a(n)~420g2
(n)256b (n)n (n)2

13n (n)3s (n)2!%/15 120,

z9
(n11)5z9

(n)1a(n)
„2520a (n)2242a (n)@8a(n)2112a(n)n (n)

1n (n)2#s (n)1114a(n)4s (n)224a(n)3~147b (n)

259n (n)s (n)2!1a(n)2n (n)~173n (n)s (n)221176b (n)!

124a(n)~210g2
(n)1105g3

(n)228b (n)n (n)2

12n (n)3s (n)2!1n (n)~5040g2
(n)12520g3

(n)

284b (n)n (n)215n (n)3s (n)2!…/15 120,

z10
(n11)5z10

(n)1a(n)~a(n)1n (n)!$2520g1
(n)242a (n)@7a(n)2

17a(n)n (n)1n (n)2#1@31a(n)4162a(n)3n (n)

142a(n)2n (n)2111a(n)n (n)31n (n)4#s (n)%/15 120.

For the transformation of the second type@see the second
line of Eq. ~19!# we have obtained

z1
(n11)5z1

(n)2„18b(n)4n (n)3115b(n)3n (n)3s (n)

142c(n)n (n)~30b (n)130c(n)2n (n)s (n)2!

284a (n)~15b (n)b(n)130b(n)c(n)23b(n)3n (n)

115c(n)s (n)22b(n)2n (n)s (n)2b(n)n (n)s (n)2!

26b(n)2@210g2
(n)1n (n)2~14b (n)163c(n)

2n (n)s (n)2!#1b(n)$1260g4
(n)n (n)22s (n)@630g2

(n)

1n (n)2~42b (n)184c(n)2n (n)s (n)2!#%…/7560,

z2
(n11)5z2

(n)1„12b(n)4n (n)3239b(n)3n (n)3s (n)

142c(n)n (n)~120b (n)1120c(n)2n (n)s (n)2!

2252a (n)~20b (n)b(n)140b(n)c(n)23b(n)3n (n)

120c(n)s (n)22b(n)2n (n)s (n)2b(n)n (n)s (n)2!

124b(n)2@315g3
(n)2n (n)2~21b (n)142c(n)
02670
1n (n)s (n)2!#1b(n)$2520g4
(n)n (n)1s (n)@7560g3

(n)

2n (n)2~294b (n)1168c(n)1n (n)s (n)2!#%…/45 360,

z3
(n11)5z3

(n)2@2520a (n)2b(n)157b(n)3n (n)4

2840a (n)n (n)~3c(n)2b(n)2n (n)!142c(n)n (n)3s (n)

212b(n)2~210g1
(n)2n (n)4s (n)!2b(n)~2520g2

(n)n (n)

242b (n)n (n)31336c(n)n (n)312520g1
(n)s (n)

1n (n)4s (n)2!#/15 120,

z4
(n11)5z4

(n)1„5040a (n)2b(n)242a (n)n (n)@120c(n)2b(n)

3n (n)~36b(n)1s (n)!#1n (n)$96b(n)3n (n)3

184c(n)n (n)2s (n)118b(n)2n (n)3s (n)2b(n)@5040g2
(n)

12520g3
(n)2n (n)2~84b (n)2672c(n)

25n (n)s (n)2!#%…/15 120, ~A2!

z5
(n11)5z5

(n)2@2520a (n)2b(n)236b(n)3n (n)4

142c(n)n (n)3s (n)130b(n)2n (n)4s (n)

1168a (n)n (n)@15c(n)2b(n)n (n)~6b(n)1s (n)!#

2b(n)@15 120g3
(n)n (n)2n (n)3~252b (n)1504c(n)

1n (n)s (n)2!#%/45 360,

z6
(n11)5z6

(n)2$630a (n)2b(n)127b(n)3n (n)4221c(n)n (n)3s (n)

19b(n)2n (n)4s (n)263a (n)n (n)@20c(n)2b(n)n (n)

3~6b(n)1s (n)!#2b(n)@1260g2
(n)n (n)1n (n)3~21b (n)

1252c(n)2n (n)s (n)2!#%/3780,

z7
(n11)5z7

(n)2b(n)n (n)@2520g1
(n)242a (n)n (n)22n (n)4~6b(n)

2s (n)!#/15 120,

z8
(n11)5z8

(n)1~5040b(n)g1
(n)n (n)242c(n)n (n)426b(n)2n (n)5

1b(n)n (n)5s (n)!/15 120,

z9
(n11)5z9

(n)2n (n)3$84a (n)b(n)2n (n)@84c(n)2b(n)n (n)

3~12b(n)15s (n)!#%/15 120,

z10
(n11)5z10

(n)2b(n)n (n)6/15 120.

All these relations, as well as other symbolic expressio
presented in the work, have been carried out usingMATH-

EMATICA 4.0 and MAPLE 6 packages installed on the Silico
Graphics Origin 3800 workstation at Linz University. Th
numerical calculations have also been performed there.
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Schüttler ~Springer-Verlag, Berlin, 1995!.

@25# M. Suzuki, Phys. Lett. A201, 425 ~1995!.
@26# S. A. Chin, Phys. Lett. A226, 344 ~1997!.
@27# A. N. Drozdov and J. J. Brey, Phys. Rev. E57, 1284~1998!.
@28# H. A. Forbert and S. A. Chin, Phys. Rev. E63, 016703~2000!.
@29# S. A. Chin and D. W. Kidwell, Phys. Rev. E62, 8746~2000!.
@30# M. Creutz and A. Gocksch, Phys. Rev. Lett.63, 9 ~1989!.
@31# S. A. Chin and C. R. Chen, J. Chem. Phys.114, 7338~2001!.
@32# F. A. Bornemann, P. Nettesheim, and Ch. Schu¨tte, J. Chem.

Phys.105, 1074~1996!.
@33# R. McLachlan, BIT Numerical Mathematics35, 258 ~1995!.
@34# M. Sofroniou and W. Oevel, SIAM~Soc. Ind. Appl. Math.! J.

Numer. Anal.34, 2063~1997!.
1-21


